Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 9(1): 674, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333353

RESUMEN

High latitudes are experiencing intense ecosystem changes with climate warming. The underlying methane (CH4) cycling dynamics remain unresolved, despite its crucial climatic feedback. Atmospheric CH4 emissions are heterogeneous, resulting from local geochemical drivers, global climatic factors, and microbial production/consumption balance. Holistic studies are mandatory to capture CH4 cycling complexity. Here, we report a large set of integrated microbial and biogeochemical data from 387 samples, using a concerted sampling strategy and experimental protocols. The study followed international standards to ensure inter-comparisons of data amongst three high-latitude regions: Alaska, Siberia, and Patagonia. The dataset encompasses different representative environmental features (e.g. lake, wetland, tundra, forest soil) of these high-latitude sites and their respective heterogeneity (e.g. characteristic microtopographic patterns). The data included physicochemical parameters, greenhouse gas concentrations and emissions, organic matter characterization, trace elements and nutrients, isotopes, microbial quantification and composition. This dataset addresses the need for a robust physicochemical framework to conduct and contextualize future research on the interactions between climate change, biogeochemical cycles and microbial communities at high-latitudes.


Asunto(s)
Gases de Efecto Invernadero , Microbiota , Dióxido de Carbono/análisis , Metano/análisis , Suelo , Humedales
2.
Syst Appl Microbiol ; 45(5): 126305, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36049255

RESUMEN

Over the last fifteen years, genomics has become fully integrated into prokaryotic systematics. The genomes of most type strains have been sequenced, genome sequence similarity is widely used for delineation of species, and phylogenomic methods are commonly used for classification of higher taxonomic ranks. Additionally, environmental genomics has revealed a vast diversity of as-yet-uncultivated taxa. In response to these developments, a new code of nomenclature, the Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode), has been developed over the last two years to allow naming of Archaea and Bacteria using DNA sequences as the nomenclatural types. The SeqCode also allows naming of cultured organisms, including fastidious prokaryotes that cannot be deposited into culture collections. Several simplifications relative to the International Code of Nomenclature of Prokaryotes (ICNP) are implemented to make nomenclature more accessible, easier to apply and more readily communicated. By simplifying nomenclature with the goal of a unified classification, inclusive of both cultured and uncultured taxa, the SeqCode will facilitate the naming of taxa in every biome on Earth, encourage the isolation and characterization of as-yet-uncultivated taxa, and promote synergies between the ecological, environmental, physiological, biochemical, and molecular biological disciplines to more fully describe prokaryotes.


Asunto(s)
Archaea , Bacterias , Archaea/genética , Bacterias/genética , Secuencia de Bases , Filogenia , ARN Ribosómico 16S
3.
Nat Microbiol ; 7(10): 1702-1708, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36123442

RESUMEN

Most prokaryotes are not available as pure cultures and therefore ineligible for naming under the rules and recommendations of the International Code of Nomenclature of Prokaryotes (ICNP). Here we summarize the development of the SeqCode, a code of nomenclature under which genome sequences serve as nomenclatural types. This code enables valid publication of names of prokaryotes based upon isolate genome, metagenome-assembled genome or single-amplified genome sequences. Otherwise, it is similar to the ICNP with regard to the formation of names and rules of priority. It operates through the SeqCode Registry ( https://seqco.de/ ), a registration portal through which names and nomenclatural types are registered, validated and linked to metadata. We describe the two paths currently available within SeqCode to register and validate names, including Candidatus names, and provide examples for both. Recommendations on minimal standards for DNA sequences are provided. Thus, the SeqCode provides a reproducible and objective framework for the nomenclature of all prokaryotes regardless of cultivability and facilitates communication across microbiological disciplines.


Asunto(s)
Metagenoma , Células Procariotas
4.
Anal Chem ; 94(35): 11959-11966, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35994737

RESUMEN

The pairing of analytical chemistry with genomic techniques represents a new wave in natural product chemistry. With an increase in the availability of sequencing and assembly of microbial genomes, interrogation into the biosynthetic capability of producers with valuable secondary metabolites is possible. However, without the development of robust, accessible, and medium to high throughput tools, the bottleneck in pairing metabolic potential and compound isolation will continue. Several innovative approaches have proven useful in the nascent stages of microbial genome-informed drug discovery. Here, we consider a number of these approaches which have led to prioritization of strain targets and have mitigated rediscovery rates. Likewise, we discuss integration of principles of comparative evolutionary studies and retrobiosynthetic predictions to better understand biosynthetic mechanistic details and link genome sequence to structure. Lastly, we discuss advances in engineering, chemistry, and molecular networking and other computational approaches that are accelerating progress in the field of omic-informed natural product drug discovery. Together, these strategies enhance the synergy between cutting edge omics, chemical characterization, and computational technologies that pitch the discovery of natural products with pharmaceutical and other potential applications to the crest of the wave where progress is ripe for rapid advances.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Descubrimiento de Drogas/métodos , Genómica , Metabolómica , Flujo de Trabajo
5.
mSphere ; 6(6): e0075921, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34851164

RESUMEN

The Antarctic marine ecosystem harbors a wealth of biological and chemical innovation that has risen in concert over millennia since the isolation of the continent and formation of the Antarctic circumpolar current. Scientific inquiry into the novelty of marine natural products produced by Antarctic benthic invertebrates led to the discovery of a bioactive macrolide, palmerolide A, that has specific activity against melanoma and holds considerable promise as an anticancer therapeutic. While this compound was isolated from the Antarctic ascidian Synoicum adareanum, its biosynthesis has since been hypothesized to be microbially mediated, given structural similarities to microbially produced hybrid nonribosomal peptide-polyketide macrolides. Here, we describe a metagenome-enabled investigation aimed at identifying the biosynthetic gene cluster (BGC) and palmerolide A-producing organism. A 74-kbp candidate BGC encoding the multimodular enzymatic machinery (hybrid type I-trans-AT polyketide synthase-nonribosomal peptide synthetase and tailoring functional domains) was identified and found to harbor key features predicted as necessary for palmerolide A biosynthesis. Surveys of ascidian microbiome samples targeting the candidate BGC revealed a high correlation between palmerolide gene targets and a single 16S rRNA gene variant (R = 0.83 to 0.99). Through repeated rounds of metagenome sequencing followed by binning contigs into metagenome-assembled genomes, we were able to retrieve a nearly complete genome (10 contigs) of the BGC-producing organism, a novel verrucomicrobium within the Opitutaceae family that we propose here as "Candidatus Synoicihabitans palmerolidicus." The refined genome assembly harbors five highly similar BGC copies, along with structural and functional features that shed light on the host-associated nature of this unique bacterium. IMPORTANCE Palmerolide A has potential as a chemotherapeutic agent to target melanoma. We interrogated the microbiome of the Antarctic ascidian, Synoicum adareanum, using a cultivation-independent high-throughput sequencing and bioinformatic strategy. The metagenome-encoded biosynthetic machinery predicted to produce palmerolide A was found to be associated with the genome of a member of the S. adareanum core microbiome. Phylogenomic analysis suggests the organism represents a new deeply branching genus, "Candidatus Synoicihabitans palmerolidicus," in the Opitutaceae family of the Verrucomicrobia phylum. The Ca. Synoicihabitans palmerolidicus 4.29-Mb genome encodes a repertoire of carbohydrate-utilizing and transport pathways, a chemotaxis system, flagellar biosynthetic capacity, and other regulatory elements enabling its ascidian-associated lifestyle. The palmerolide producer's genome also contains five distinct copies of the large palmerolide biosynthetic gene cluster that may provide structural complexity of palmerolide variants.


Asunto(s)
Macrólidos/análisis , Microbiota , Urocordados/microbiología , Verrucomicrobia/genética , Animales , Regiones Antárticas , Familia de Multigenes , Filogenia , ARN Ribosómico 16S
6.
Sci Adv ; 7(35)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34452910

RESUMEN

Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton interactome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar) and more connected poleward. Integrated niche modeling revealed biome-specific community interactome responses to environmental change and forecasted the most affected lineages for each community. These results provide baseline approaches to assess community structure and organismal interactions under climate scenarios while identifying plausible plankton bioindicators for ocean monitoring of climate change.

7.
Front Chem ; 9: 802574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004620

RESUMEN

Complex interactions exist between microbiomes and their hosts. Increasingly, defensive metabolites that have been attributed to host biosynthetic capability are now being recognized as products of host-associated microbes. These unique metabolites often have bioactivity targets in human disease and can be purposed as pharmaceuticals. Polyketides are a complex family of natural products that often serve as defensive metabolites for competitive or pro-survival purposes for the producing organism, while demonstrating bioactivity in human diseases as cholesterol lowering agents, anti-infectives, and anti-tumor agents. Marine invertebrates and microbes are a rich source of polyketides. Palmerolide A, a polyketide isolated from the Antarctic ascidian Synoicum adareanum, is a vacuolar-ATPase inhibitor with potent bioactivity against melanoma cell lines. The biosynthetic gene clusters (BGCs) responsible for production of secondary metabolites are encoded in the genomes of the producers as discrete genomic elements. A candidate palmerolide BGC was identified from a S. adareanum microbiome-metagenome based on a high degree of congruence with a chemical structure-based retrobiosynthetic prediction. Protein family homology analysis, conserved domain searches, active site and motif identification were used to identify and propose the function of the ∼75 kbp trans-acyltransferase (AT) polyketide synthase-non-ribosomal synthase (PKS-NRPS) domains responsible for the stepwise synthesis of palmerolide A. Though PKS systems often act in a predictable co-linear sequence, this BGC includes multiple trans-acting enzymatic domains, a non-canonical condensation termination domain, a bacterial luciferase-like monooxygenase (LLM), and is found in multiple copies within the metagenome-assembled genome (MAG). Detailed inspection of the five highly similar pal BGC copies suggests the potential for biosynthesis of other members of the palmerolide chemical family. This is the first delineation of a biosynthetic gene cluster from an Antarctic microbial species, recently proposed as Candidatus Synoicihabitans palmerolidicus. These findings have relevance for fundamental knowledge of PKS combinatorial biosynthesis and could enhance drug development efforts of palmerolide A through heterologous gene expression.

9.
Nat Microbiol ; 5(8): 987-994, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32514073

RESUMEN

The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Archaea/genética , Bacterias/genética , ADN Bacteriano , Metagenoma , Filogenia , Células Procariotas/clasificación , Análisis de Secuencia de ADN , Terminología como Asunto
10.
Mar Drugs ; 18(6)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498449

RESUMEN

Polar marine ecosystems hold the potential for bioactive compound biodiscovery, based on their untapped macro- and microorganism diversity. Characterization of polar benthic marine invertebrate-associated microbiomes is limited to few studies. This study was motivated by our interest in better understanding the microbiome structure and composition of the ascidian, Synoicum adareanum, in which palmerolide A (PalA), a bioactive macrolide with specificity against melanoma, was isolated. PalA bears structural resemblance to a hybrid nonribosomal peptide-polyketide that has similarities to microbially-produced macrolides. We conducted a spatial survey to assess both PalA levels and microbiome composition in S. adareanum in a region of the Antarctic Peninsula near Anvers Island (64° 46'S, 64° 03'W). PalA was ubiquitous and abundant across a collection of 21 ascidians (3 subsamples each) sampled from seven sites across the Anvers Island Archipelago. The microbiome composition (V3-V4 16S rRNA gene sequence variants) of these 63 samples revealed a core suite of 21 bacterial amplicon sequence variants (ASVs)-20 of which were distinct from regional bacterioplankton. ASV co-occurrence analysis across all 63 samples yielded subgroups of taxa that may be interacting biologically (interacting subsystems) and, although the levels of PalA detected were not found to correlate with specific sequence variants, the core members appeared to occur in a preferred optimum and tolerance range of PalA levels. These results, together with an analysis of the biosynthetic potential of related microbiome taxa, describe a conserved, high-latitude core microbiome with unique composition and substantial promise for natural product biosynthesis that likely influences the ecology of the holobiont.


Asunto(s)
Macrólidos/análisis , Microbiota , Urocordados/microbiología , Animales , Regiones Antárticas , Islas , ARN Ribosómico 16S
11.
Sci Data ; 6(1): 285, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772173

RESUMEN

Metagenomic sequence data from defined mock communities is crucial for the assessment of sequencing platform performance and downstream analyses, including assembly, binning and taxonomic assignment. We report a comparison of shotgun metagenome sequencing and assembly metrics of a defined microbial mock community using the Oxford Nanopore Technologies (ONT) MinION, PacBio and Illumina sequencing platforms. Our synthetic microbial community BMock12 consists of 12 bacterial strains with genome sizes spanning 3.2-7.2 Mbp, 40-73% GC content, and 1.5-7.3% repeats. Size selection of both PacBio and ONT sequencing libraries prior to sequencing was essential to yield comparable relative abundances of organisms among all sequencing technologies. While the Illumina-based metagenome assembly yielded good coverage with few misassemblies, contiguity was greatly improved by both, Illumina + ONT and Illumina + PacBio hybrid assemblies but increased misassemblies, most notably in genomes with high sequence similarity to each other. Our resulting datasets allow evaluation and benchmarking of bioinformatics software on Illumina, PacBio and ONT platforms in parallel.


Asunto(s)
Metagenoma , Microbiota , Análisis de Secuencia de ADN/métodos , Bacterias/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento
12.
Front Microbiol ; 9: 1192, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29930542

RESUMEN

Developing a microbial ecological understanding of Arctic thermokarst lake sediments in a geochemical context is an essential first step toward comprehending the contributions of these systems to greenhouse gas emissions, and understanding how they may shift as a result of long term changes in climate. In light of this, we set out to study microbial diversity and structure in sediments from four shallow thermokarst lakes in the Arctic Coastal Plain of Alaska. Sediments from one of these lakes (Sukok) emit methane (CH4) of thermogenic origin, as expected for an area with natural gas reserves. However, sediments from a lake 10 km to the North West (Siqlukaq) produce CH4 of biogenic origin. Sukok and Siqlukaq were chosen among the four lakes surveyed to test the hypothesis that active CH4-producing organisms (methanogens) would reflect the distribution of CH4 gas levels in the sediments. We first examined the structure of the little known microbial community inhabiting the thaw bulb of arctic thermokarst lakes near Barrow, AK. Molecular approaches (PCR-DGGE and iTag sequencing) targeting the SSU rRNA gene and rRNA molecule were used to profile diversity, assemblage structure, and identify potentially active members of the microbial assemblages. Overall, the potentially active (rRNA dominant) fraction included taxa that have also been detected in other permafrost environments (e.g., Bacteroidetes, Actinobacteria, Nitrospirae, Chloroflexi, and others). In addition, Siqlukaq sediments were unique compared to the other sites, in that they harbored CH4-cycling organisms (i.e., methanogenic Archaea and methanotrophic Bacteria), as well as bacteria potentially involved in N cycling (e.g., Nitrospirae) whereas Sukok sediments were dominated by taxa typically involved in photosynthesis and biogeochemical sulfur (S) transformations. This study revealed a high degree of archaeal phylogenetic diversity in addition to CH4-producing archaea, which spanned nearly the phylogenetic extent of currently recognized Archaea phyla (e.g., Euryarchaeota, Bathyarchaeota, Thaumarchaeota, Woesearchaeota, Pacearchaeota, and others). Together these results shed light on expansive bacterial and archaeal diversity in Arctic thermokarst lakes and suggest important differences in biogeochemical potential in contrasting Arctic thermokarst lake sediment ecosystems.

13.
Astrobiology ; 17(12): 1265-1273, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29016193

RESUMEN

Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs-relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts-could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as "electron disposal units" for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes. Key Words: Biofilms-Europa-Extraterrestrial life-Hydrothermal systems. Astrobiology 17, 1265-1273.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre/química , Júpiter , Origen de la Vida , Radiación , Dióxido de Carbono/síntesis química , Hidrógeno/química , Hielo , Redes y Vías Metabólicas , Metano/química , Océanos y Mares , Termodinámica
14.
Integr Comp Biol ; 56(4): 542-55, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27493149

RESUMEN

Edwardsiella andrillae is a sea anemone (Cnidaria: Anthozoa: Actiniaria) only known to live embedded in the ice at the seawater interface on the underside of the Ross Ice Shelf, Antarctica. Although the anatomy and morphological characteristics of E. andrillae have been described, the adaptations of this species to the under-ice ecosystem have yet to be examined. One feature that may be important to the physiology and ecology of E. andrillae is its microbiome, which may play a role in health and survival, as has been deduced in other metazoans, including anthozoans. Here we describe the microbiome of five specimens of E. andrillae, compare the diversity we recovered to that known for temperate anemones and another Antarctic cnidarian, and consider the phylogenetic and functional implications of microbial diversity for these animals. The E. andrillae microbiome was relatively low in diversity, with seven phyla detected, yet included substantial phylogenetic novelty. Among the five anemones investigated, the distribution of microbial taxa varied; this trait appears to be shared by many anthozoans. Most importantly, specimens either appeared to be dominated by Proteobacteria-affiliated members or by deeply branching Tenericute sequences. There were few closely related sequence types that were common to temperate and Antarctic sea anemone microbiomes, the exception being an Acinetobacter-related representative. Similar observations were made between microbes associated with E. andrillae and an Antarctic soft coral; however, there were several closely-related, low abundance Gammaproteobacteria in both Antarctic microbiomes, particularly from the soft coral, that are also commonly detected in Southern Ocean seawater. Although this preliminary study leaves open many questions concerning microbiome diversity and its role in host ecology, we identify major lineages of microbes (e.g., diverse deep-branching Alphaproteobacteria, Epsilonproteobacteria, and divergent Tenericutes affiliates) that may play critical roles, and we highlight the current understanding and the need for future studies of sea anemone-microbiome relationships.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Microbiota/fisiología , Anémonas de Mar/microbiología , Animales , Regiones Antárticas , Fenómenos Fisiológicos Bacterianos , Filogenia
15.
Appl Environ Microbiol ; 80(12): 3687-98, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24727273

RESUMEN

The anoxic and freezing brine that permeates Lake Vida's perennial ice below 16 m contains an abundance of very small (≤0.2-µm) particles mixed with a less abundant population of microbial cells ranging from >0.2 to 1.5 µm in length. Fluorescent DNA staining, electron microscopy (EM) observations, elemental analysis, and extraction of high-molecular-weight genomic DNA indicated that a significant portion of these ultrasmall particles are cells. A continuous electron-dense layer surrounding a less electron-dense region was observed by EM, indicating the presence of a biological membrane surrounding a cytoplasm. The ultrasmall cells are 0.192 ± 0.065 µm, with morphology characteristic of coccoid and diplococcic bacterial cells, often surrounded by iron-rich capsular structures. EM observations also detected the presence of smaller unidentified nanoparticles of 0.020 to 0.140 µm among the brine cells. A 16S rRNA gene clone library from the brine 0.1- to 0.2-µm-size fraction revealed a relatively low-diversity assemblage of Bacteria sequences distinct from the previously reported >0.2-µm-cell-size Lake Vida brine assemblage. The brine 0.1- to 0.2-µm-size fraction was dominated by the Proteobacteria-affiliated genera Herbaspirillum, Pseudoalteromonas, and Marinobacter. Cultivation efforts of the 0.1- to 0.2-µm-size fraction led to the isolation of Actinobacteria-affiliated genera Microbacterium and Kocuria. Based on phylogenetic relatedness and microscopic observations, we hypothesize that the ultrasmall cells in Lake Vida brine are ultramicrocells that are likely in a reduced size state as a result of environmental stress or life cycle-related conditions.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Cubierta de Hielo/microbiología , Lagos/microbiología , Sales (Química)/metabolismo , Regiones Antárticas , Bacterias/genética , Bacterias/metabolismo , ADN Bacteriano/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Sales (Química)/química
16.
Nutr J ; 12: 110, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23915093

RESUMEN

BACKGROUND: A number of dietary quality indices (DQIs) have been developed to assess the quality of dietary intake. Analysis of the intake of individual nutrients does not reflect the complexity of dietary behaviours and their association with health and disease. The aim of this study was to determine the dietary quality of individuals with type 2 diabetes mellitus (T2DM) using a variety of validated DQIs. METHODS: In this cross-sectional analysis of 111 Caucasian adults, 65 cases with T2DM were recruited from the Diabetes Day Care Services of St. Columcille's and St. Vincent's Hospitals, Dublin, Ireland. Forty-six controls did not have T2DM and were recruited from the general population. Data from 3-day estimated diet diaries were used to calculate 4 DQIs. RESULTS: Participants with T2DM had a significantly lower score for consumption of a Mediterranean dietary pattern compared to the control group, measured using the Mediterranean Diet Score (Range 0-9) and the Alternate Mediterranean Diet Score (Range 0-9) (mean ± SD) (3.4 ± 1.3 vs 4.8 ± 1.8, P < 0.001 and 3.3 ± 1.5 vs 4.2 ± 1.8, P = 0.02 respectively). Participants with T2DM also had lower dietary quality than the control population as assessed by the Healthy Diet Indicator (Range 0-9) (T2DM; 2.6 ± 2.3, control; 3.3 ± 1.1, P = 0.001). No differences between the two groups were found when dietary quality was assessed using the Alternate Healthy Eating Index. Micronutrient intake was assessed using the Micronutrient Adequacy Score (Range 0-8) and participants with T2DM had a significantly lower score than the control group (T2DM; 1.6 ± 1.4, control; 2.3 ± 1.4, P = 0.009). When individual nutrient intakes were assessed, no significant differences were observed in macronutrient intake. CONCLUSION: Overall, these findings demonstrate that T2DM was associated with a lower score when dietary quality was assessed using a number of validated indices.


Asunto(s)
Diabetes Mellitus Tipo 2/dietoterapia , Ingestión de Energía , Conducta Alimentaria , Calidad de los Alimentos , Adulto , Anciano , Glucemia/análisis , Índice de Masa Corporal , Estudios de Casos y Controles , Estudios Transversales , Registros de Dieta , Dieta Mediterránea , Ayuno , Femenino , Humanos , Irlanda , Masculino , Micronutrientes/administración & dosificación , Persona de Mediana Edad , Evaluación Nutricional , Triglicéridos/sangre
17.
Proc Natl Acad Sci U S A ; 109(50): 20626-31, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23185006

RESUMEN

The permanent ice cover of Lake Vida (Antarctica) encapsulates an extreme cryogenic brine ecosystem (-13 °C; salinity, 200). This aphotic ecosystem is anoxic and consists of a slightly acidic (pH 6.2) sodium chloride-dominated brine. Expeditions in 2005 and 2010 were conducted to investigate the biogeochemistry of Lake Vida's brine system. A phylogenetically diverse and metabolically active Bacteria dominated microbial assemblage was observed in the brine. These bacteria live under very high levels of reduced metals, ammonia, molecular hydrogen (H(2)), and dissolved organic carbon, as well as high concentrations of oxidized species of nitrogen (i.e., supersaturated nitrous oxide and ∼1 mmol⋅L(-1) nitrate) and sulfur (as sulfate). The existence of this system, with active biota, and a suite of reduced as well as oxidized compounds, is unusual given the millennial scale of its isolation from external sources of energy. The geochemistry of the brine suggests that abiotic brine-rock reactions may occur in this system and that the rich sources of dissolved electron acceptors prevent sulfate reduction and methanogenesis from being energetically favorable. The discovery of this ecosystem and the in situ biotic and abiotic processes occurring at low temperature provides a tractable system to study habitability of isolated terrestrial cryoenvironments (e.g., permafrost cryopegs and subglacial ecosystems), and is a potential analog for habitats on other icy worlds where water-rock reactions may cooccur with saline deposits and subsurface oceans.


Asunto(s)
Lagos/microbiología , Microbiología del Agua , Regiones Antárticas , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Clima Frío , Ecosistema , Evolución Molecular , Hielo , Lagos/análisis , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , ARN Ribosómico/genética
18.
Proc Natl Acad Sci U S A ; 109(43): 17633-8, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045668

RESUMEN

The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation.


Asunto(s)
Bacterias/aislamiento & purificación , Geografía , Biología Marina , Microbiología del Agua , Regiones Antárticas , Regiones Árticas , Bacterias/clasificación , Bacterias/genética , Filogenia , ARN Ribosómico/genética
19.
ISME J ; 6(10): 1883-900, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22534610

RESUMEN

A metaproteomic survey of surface coastal waters near Palmer Station on the Antarctic Peninsula, West Antarctica, was performed, revealing marked differences in the functional capacity of summer and winter communities of bacterioplankton. Proteins from Flavobacteria were more abundant in the summer metaproteome, whereas winter was characterized by proteins from ammonia-oxidizing Marine Group I Crenarchaeota. Proteins prevalent in both seasons were from SAR11 and Rhodobacterales clades of Alphaproteobacteria, as well as many lineages of Gammaproteobacteria. The metaproteome data were used to elucidate the main metabolic and energy generation pathways and transport processes occurring at the microbial level in each season. In summer, autotrophic carbon assimilation appears to be driven by oxygenic photoautotrophy, consistent with high light availability and intensity. In contrast, during the dark polar winter, the metaproteome supported the occurrence of chemolithoautotrophy via the 3-hydroxypropionate/4-hydroxybutyrate cycle and the reverse tricarboxylic acid cycle of ammonia-oxidizing archaea and nitrite-oxidizing bacteria, respectively. Proteins involved in nitrification were also detected in the metaproteome. Taurine appears to be an important source of carbon and nitrogen for heterotrophs (especially SAR11), with transporters and enzymes for taurine uptake and degradation abundant in the metaproteome. Divergent heterotrophic strategies for Alphaproteobacteria and Flavobacteria were indicated by the metaproteome data, with Alphaproteobacteria capturing (by high-affinity transport) and processing labile solutes, and Flavobacteria expressing outer membrane receptors for particle adhesion to facilitate the exploitation of non-labile substrates. TonB-dependent receptors from Gammaproteobacteria and Flavobacteria (particularly in summer) were abundant, indicating that scavenging of substrates was likely an important strategy for these clades of Southern Ocean bacteria. This study provides the first insight into differences in functional processes occurring between summer and winter microbial communities in coastal Antarctic waters, and particularly highlights the important role that 'dark' carbon fixation has in winter.


Asunto(s)
Bacterias/clasificación , Crenarchaeota/clasificación , Proteoma/análisis , Estaciones del Año , Agua de Mar/microbiología , Amoníaco/metabolismo , Regiones Antárticas , Bacterias/metabolismo , Crenarchaeota/metabolismo , Procesos Heterotróficos , Nitrificación , Océanos y Mares , Filogenia , Plancton/clasificación , Plancton/metabolismo , Agua/metabolismo
20.
ISME J ; 6(10): 1901-15, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22534611

RESUMEN

Antarctic surface oceans are well-studied during summer when irradiance levels are high, sea ice is melting and primary productivity is at a maximum. Coincident with this timing, the bacterioplankton respond with significant increases in secondary productivity. Little is known about bacterioplankton in winter when darkness and sea-ice cover inhibit photoautotrophic primary production. We report here an environmental genomic and small subunit ribosomal RNA (SSU rRNA) analysis of winter and summer Antarctic Peninsula coastal seawater bacterioplankton. Intense inter-seasonal differences were reflected through shifts in community composition and functional capacities encoded in winter and summer environmental genomes with significantly higher phylogenetic and functional diversity in winter. In general, inferred metabolisms of summer bacterioplankton were characterized by chemoheterotrophy, photoheterotrophy and aerobic anoxygenic photosynthesis while the winter community included the capacity for bacterial and archaeal chemolithoautotrophy. Chemolithoautotrophic pathways were dominant in winter and were similar to those recently reported in global 'dark ocean' mesopelagic waters. If chemolithoautotrophy is widespread in the Southern Ocean in winter, this process may be a previously unaccounted carbon sink and may help account for the unexplained anomalies in surface inorganic nitrogen content.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Metagenómica , Estaciones del Año , Agua de Mar/microbiología , Regiones Antárticas , Archaea/genética , Procesos Autotróficos , Bacterias/genética , ADN de Archaea/genética , ADN Bacteriano/genética , Biblioteca de Genes , Procesos Heterotróficos , Filogenia , Plancton/clasificación , Plancton/genética , ARN Ribosómico/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...